توضیحات
مدل پیشنهادی هوشمند فازی-FIRMACA با استفاده از الگوریتم خوشه بندی مورچه ای برای شبکه های اجتماعی
چکیده
میزان خطا، پارامتری چالش برانگیز است که برای سیستم های پیشنهادگری که در آنها حرکت زیاد آیتم در میان خوشه های داده وجود دارد، باید بررسی شود. در برنامه های شبکه های اجتماعی، معمولاً تهیه پیشنهادهای مناسب کاربر در مواردی که تکنیک های خوشه بندی مورچه ای بهترین راه حل ها را برای مشکلات خوشه بندی ارائه می دهد، ضروری است. با این حال، الگوریتم های خوشه بندی مورچه ای موجود، در جستجوی محلی ناکارآمد هستند. همچنین آنها برای تقسیم بندی خوشه ای موثر به اصلاح قوانین فازی هوشمند نیاز دارند. بنابراین در این مقاله که در آن ترکیبی از مباحث مرتبط با دستیابی به نکات جدید و قوانین فازی برای خوشه بندی مورچه ای وجود دارد، یک مدل جدید با نام مدل پیشنهادی هوشمند فازی با استفاده از الگوریتم خوشه بندی مورچه ای (FIRMACA) ارائه شده است. تجزیه و تحلیل های تجربی، بهبود معیار دقت، یادآوری، سود تجمعی نرمال (NDCG) (5% ≤)) و کاهش قابل توجه (%1 ≤)) در میزان خطای طبقه بندی نادرست (MER) در مقایسه با الگوریتم های مبتنی بر ACO را نشان می دهد. خوشه های انتخاب شده بصورت کلی و محلی برای استخراج بهترین خوشه های تعریف شده جدید، بهینه شده اند.
کلمات کلیدی: خوشه بندی مورچه ای فازی، بهینه سازی جستجوی محلی فازی، تراکم فرومون، امتیاز پیشنهادی، ماتریس دنباله فرومون
(مقاله 15 صفحه) پی دی اف انگلیسی
(ترجمه 24 صفحه)ورد ترجمه شده
- لینک دانلود فایل بلافاصله بعد از پرداخت وجه به نمایش در خواهد آمد.
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
دیدگاهها
هیچ دیدگاهی برای این محصول نوشته نشده است.